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Abstract. The introduction of more renewable energy sources into the
energy system increases the variability and weather dependence of elec-
tricity generation. Power system simulations are used to assess the ad-
equacy and reliability of the electricity grid over decades, but often be-
come computational intractable for such long simulation periods with
high technical detail. To alleviate this computational burden, we inves-
tigate the use of outlier detection algorithms to find periods of extreme
renewable energy generation which enables detailed modelling of the per-
formance of power systems under these circumstances. Specifically, we
apply the Maximum Divergent Intervals (MDI) algorithm to power gen-
eration time series that have been derived from ERA5 historical climate
reanalysis covering the period from 1950 through 2019. By applying the
MDI algorithm on these time series, we identified intervals of extreme
low and high energy production. To determine the outlierness of an inter-
val different divergence measures can be used. Where the cross-entropy
measure results in shorter and strongly peaking outliers, the unbiased
Kullback-Leibler divergence tends to detect longer and more persistent
intervals. These intervals are regarded as potential risks for the electricity
grid by domain experts, showcasing the capability of the MDI algorithm
to detect critical events in these time series. For the historical period
analysed, we found no trend in outlier intensity, or shift and lengthening
of the outliers that could be attributed to climate change. By applying
MDI on climate model output, power system modellers can investigate
the adequacy and possible changes of risk for the current and future
electricity grid under a wider range of scenarios.

Keywords: energy climate · power system modelling · outlier detection
· time series · climate change · anomaly detection · high impact events

1 Introduction

With the energy transition from fossil-fuel driven generation towards intermit-
tent renewable energy sources like wind and solar power, the electricity supply
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becomes more variable [31]. Additionally, electrification of space heating will en-
hance [39, 31] the already existing variability at the electricity demand side [32,
5]. This twofold increase in variability can be partly counteracted by the high
interconnectivity of the European electricity system [13] that enables exchanges
between countries with either electricity shortfalls or surpluses. However, large
scale penetration of variable renewable energy sources can endanger the reliabil-
ity of the system as weather driven critical conditions may damage elements in
the electricity grid or lead to hours with unserved energy [34].

Therefore, insights into critical events are required to support stakehold-
ers with taking appropriate risk reducing investments during the energy transi-
tion [40]. For instance, such events could be avoided by investments in flexibility
options [14], interconnections [30], storage facilities [24], spatial balancing [27,
16] and/or back-up systems.

Power system simulation models can be used to select and quantify these
type of investments to deal with critical events in different scenarios of power
system development [17]. The simulations often search for cost-effective solutions
under pre-set reliability and environmental performance standards. However,
when all important features and limitations of the power system are taken into
account, these power system simulations can become very complex, resulting in
high computational burdens that scale with the simulation period [38].

These constraints on the simulation period impede that power system mod-
ellers sufficiently assess the impact of variability of intermittent renewables over
different timescales ranging from sub-hourly to decadal [25]. A promising method
to comprehensively incorporate the variability of renewables into power system
simulations without increasing the simulation period is the Importance Subsam-
pling approach developed by Hilbers et al. [21]. However, this method may over-
look important weather-related outliers resulting in an inaccurate assessment
of reliability under critical conditions. Although energy system experts could
complement the method of Hilbers et al. with information of extreme events in
the past [10], such information is lacking for future weather years from climate
models [7]. The latter is crucial though, among others for evaluating the power
system performance under climate change conditions.

In this paper we apply the Maximally Divergent Intervals (MDI) algorithm
developed by Barz et al. [2] that enables the systematic detection of outliers in
energy climate datasets, like renewable energy production time series. We per-
form several experiments on a energy climate dataset of 70 years to determine
the merits and limitations of this method to find critical events. The developed
method is a key step in a joint project with experts from a national meteorolog-
ical institute and a Transmission System Operator (TSO). It will be applied to
identify critical conditions in very large datasets from climate models to assess
system adequacy in many scenarios with power system simulation modelling.

This paper is organized as follows. Related work is discussed in Section 2 to
place the outlier detection method in a broader context. Section 3 introduces the
energy climate dataset used in this study. Next the relevant components of the
algorithm are briefly described in Section 4. The application of the algorithm is
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experimentally evaluated and discussed in Section 5. Finally, Section 6 presents
the conclusion and next steps in our project.

2 Related Work

Here we will focus on related work concerned with finding critical events in
energy production data and weather data. For related work on algorithms for
outlier detection, we refer to the overview in the introduction of Barz et al. [3].

A broad research community addressed the identification of extreme weather
events in historical weather years by applying a variation of methods. Where
Wu and Chawla [37] focus on using Extreme Value Theory to detect and track
heavy rainfall events, others like Duggimpudi et al. [12] used Behavioural outlier
Factors to track the path of hurricane Katrina.

Although such extreme weather events may be of interest in their own right
due to their potential severity [1], not all high impact events are caused by
extreme weather events [33]. Therefore, research is shifting from the identification
of extreme weather events to the identification of weather events that have a
severe impact on society [40].

The impact based approach asks for a clear definition of a variable that can
measure the severity of this impact. Thus searching for weather events that pose
a risk for the operation of the power system requires first of all knowledge of how
weather influences the power system, secondly a method to classify the weather
driven impacts between normal to adverse to severe, and thirdly to detect these
severe events. Dawkins and Rushby [10], for example created a composite impact
variable capturing the relations between wind droughts and electricity demand
peaks. Another example, is the study by van der Wiel et al. [34] who also used a
composite variable representing weather dependent solar and wind supply minus
the electricity demand. By dividing the renewable generation by the electricity
demand, significantly different critical events where found by Drew et al. [11],
indicating the importance of the exact definition of the impact variable.

In most of these studies, the impacts are considered severe when the impact
value exceeds a pre-defined threshold [10, 11, 34]. Thus the nature of the impact
is pre-determined by this selection criterion and can for example be a shortage
or surplus of energy during a specific time horizon. Furthermore, although most
studies look at extremes at different time horizons e.g., 1 day, 1 week or 2 weeks,
they often fix the length of the time horizon before determining the outliers. As
the intensity, duration and/or timing of high impacts can change due to climate
change, a more flexible method would be beneficial when looking at climate
change related risks.

Finding critical events for the power system thus requires knowledge of the
relation between weather and impact. Expert opinion is a way to determine if an
event is critical, but it might be very subjective. A thorough overview of critical
events for the United Kingdom is given by Dawkins and Rushby [10] where they
rely on extensive expert knowledge, and by Ward [35] for the wider region of
Europe, though their work could be considered dated given the fast transition.
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Additionally, despite the effort of the energy climate community the input
data for such studies are not available in a coordinated way for most countries [7].
Using labelled real world data for training an outlier detection method is thus not
a viable option, synthetic time series are therefore used within the energy climate
community. This limited availability of data is especially an issue with respect to
energy consumption data. Methods exist to model the energy consumption [26,
32, 9], but the difficulty in the acquisition of the data required limits the scope
of this paper to renewable energy generation.

3 The Energy Climate Dataset

In this section we provide a brief introduction into the data used for our exper-
iments and how it was generated. We first discuss the properties of the ERA5
dataset in Section 3.1. After this we will discuss, in Section 3.2, the energy con-
version models used to create electricity generation data based on the ERA5
reanalysis data.

3.1 The ERA5 Reanalysis Data

ERA5 is the latest reanalysis dataset developed by the European Centre for
Medium-Range Weather Forecasts [20]. In a reanalysis dataset [19], historical
observations are consistently assimilated into numerical weather models to give
a best estimate of the recent climate.

ERA5 reanalysis data stretches from 1950 to the present, with a two month
delay. The period between 1950 and 1979 is the preliminary version of the ERA5
back-extension [4]. The ERA5 and its back-extension have undergone significant
quality control and are considered state-of-the-art. The variables used in this
research are solar irradiance, wind speed at 100 meter height, and 2 meter tem-
perature.

The temporal granularity of the data is hourly, with a spatial granularity of
0.25 degree or ± 31 kilometers. The period we covered spans from 1950 through
2019. In the spatial domain we used the subregion of Europe, defined here as
the region between latitude −14.75 to 40 East and longitude 35 to 74.75 North.

3.2 Energy Conversion Models

To calculate the electricity generation based on climate reanalysis data one needs
to know the capacity factor of wind turbines and solar photo-voltaic panels per
grid cell, and the distribution of their capacity over the region of interest. The
first can be obtained by using conversion models that compute a capacity factor
for each grid cell based on the climate variables in that grid cell. The second, a
distribution of renewable energy sources for the target year of 2050 was provided
to us upon request by Bas van Zuijlen, for details on the properties of this possible
distribution we refer to [41].
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In collaboration with the TSO stakeholder of our project, several conversion
models were compared and analysed. For solar panel electricity generation we
compared the methods presented in [23] and [6]. More advanced methods where
not used as those require additional information on panel tilt, angle and solar
radiation components that are not available. We selected the method as set out
by [23], we refer to them for more details.

For wind turbine electricity generation we compared the methods described
in [23, 29, 8, 15, 28]. Based on the model complexity, running time and accuracy
of the output, we selected the general power curve method from [23]. However,
we made three adjustments to this model. First, we reduced the effective capacity
factor (CFe) with 5% to 95% to represent the wake losses in large scale wind-
farms. Secondly, we introduce a linear decay in the capacity factor at high wind
speeds to more accurately represent high windspeed operational conditions. The
third change was that we tuned the power curve regimes. Equation (1) gives the
capacity factor for wind turbines (CFwind) used in this study.

CFwind(t) = CFe ×



0 if V (t) < VCI ,
V (t)3−V 3

CI

V 3
R−V 3

CI
if VCI ≤ V (t) < VR,

1 if VR ≤ V (t) < VD,
VCO

VCO−VD
− V (t)

VCO−VD
if VD ≤ V (t) < VCO,

0 if V (t) ≥ VCO.

(1)

Here V (t) is the wind speed at the height of the wind turbine and the power
curve regimes are given by the cut-in (VCI=3 m/s), rated (VR= 11 m/s), decay
(VD= 20m/s) and cut-out (VCO= 25m/s) wind speed. The windspeed provided
by ERA5 (at 100 meter) did not match the hub height for offshore turbines
within the capacity distribution used [41], therefore it is scaled using the wind
profile power law to 150 meters. The surface roughness was set to a constant
value for both onshore (α = 0.143) and offshore regions (α = 0.11).

The total energy generation per grid cell is obtained by multiplying the ca-
pacity factor with the installed capacity from the distribution used.

The temporal variations in supply are expected to play a larger role than
the spatial variation for the critical conditions in the power system. Addition-
ally, the current European electricity grid is highly interconnected5, even higher
interconnectivity of the system is expected by 2050. As we search for critical
conditions and we have to reduce the dataset size for tractability, we assume
that the electricity grid can be approximated by a copper plate [41]. This im-
plies that the flow of electricity is not impeded and local inbalances are dealt
with on system wide scale.

Due to the copperplate assumption we can sum the electricity generation per
technology over the European region to obtain time series data. Our final input
time series data thus contains three variables, namely wind-onshore (WON),
wind-offshore (WOF), and solar photo-voltaic (SPV) electricity generation. This

5 See https://www.entsoe.eu/data/map/ for a interactive map of the current network.
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data is based on historical weather years (1950−−2019), but uses a possible
distribution of renewables in a deep decarbonised future. For each variable the
length of the time series is therefore N = 613, 594.

4 The MDI algorithm

In this section we give a short description of the Maximally Divergent Intervals
(MDI) algorithm (see [2, 3] for more details). This algorithm finds outliers in
spatial-temporal data, but since we aggregate over the spatial component, we
will restrict the presentation to the strictly temporal case. Let

{(xt,1, xt,2, . . . , xt,d) : t = 1, . . . , N}

be a d-dimensional multivariate time series of length N . Individual samples are
written as xt ∈ Rd. Loosely speaking, an outlier is an interval in which the
distribution of the variables deviates strongly from their distribution outside
that interval. To model the probability distribution, Kernel Density Estimation
(KDE) using Gaussian kernels or a multivariate Gaussian distribution are ap-
plied. The anomaly score of interval I is defined as:

S(I) = D(p̂I , p̂Ω), I ∈ I (2)

whereD is some measure of the divergence between two probability distributions,
p̂I is the distribution fitted to the observations inside the interval, and p̂Ω is
the distribution fitted to the remaining observations. The set I contains all
intervals with a time horizon length between a user-specified minimum a and
maximum b, hence |I| ≈ N(b − a). Possible divergence measures are cross-
entropy, (unbiased) Kullback-Leibler and Jensen-Shannon divergence. Although
Jensen-Shannon divergence has its merits, it was found not to be tractable due
to the size of our data. The cross-entropy and Kullback-Leibler divergence are
respectively computed by:

Dce(I,Ω) =
1

|I|
∑
t∈I

log p̂Ω(xt), and Dkl(I,Ω) =
1

|I|
∑
t∈I

log

(
p̂I(xt)

p̂Ω(xt)

)
,

where p̂I(xt) is the probability density of data point t according to the probabil-
ity density fitted to the interval, and likewise p̂Ω(xt) is the probability density
of data point t according to the probability density fitted to the remainder of
the data. Barz et al. [3] note that Dkl has a bias towards smaller intervals, and
propose the unbiased variant Du-kl = 2 · |I| · Dkl. If a multivariate Gaussian
distribution is used to estimate the probability densities, then the (unbiased)
Kullback-Leibler divergence can be computed quite efficiently, since in that case
a closed-form solution is available.

To take into account the temporal correlation between data points, a tech-
nique call time-delay embedding is applied. Time-delay embedding incorporates
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context from previous time-steps into each sample by transforming a given time
series {xt}Nt=1,xt ∈ Rd into another time-series {x′t}Nt=1+(κ−1)τ , x′t ∈ Rκd, with

x′t =
(
x>t x>t−τ x>t−2τ · · · x>t−(κ−1)τ

)>
.

Here the embedding dimension κ specifies the number of samples to stack to-
gether and the time lag τ specifies the gap between two consecutive time-steps
to be included as context.

To make the algorithm better suited for large data sets, a method that pro-
poses intervals that are likely to contain outliers is used. The idea behind the
method is that an outlier interval tends to contain several data points that would
receive high scores when using point wise outlier detection. One such point wise
scoring method is Hotelling’s T 2 score [22] (or squared Mahalanobis distance):

T 2
t = (xt − µ̂)>Σ̂−1(xt − µ̂).

At the start and end of an outlying interval, respectively, an increase and decrease
of the point wise scores is expected. Therefore, only intervals that start and end
with data points whose

g(t) = |T 2
t+1 − T 2

t−1|
value surpass the threshold θg = µ̂g + ϑ · σ̂g are considered, where ϑ is a param-
eter to be set by the user. Thus much less intervals need to be checked leading
to a substantial speed up, since estimating distributions and divergence calcula-
tions are very time consuming. The potential downside of this approach is that
outlier intervals may be overlooked, thus lowering recall. However, experiments
performed by Barz et al. [3] show that this was not the case when a reasonable
value for ϑ was selected.

In order to ensure that the top detected outliers aren’t all small variations
of the same event, starting with the top outlier, the overlap:

O(I1, I2) =
|I1 ∩ I2|
|I1 ∪ I2|

with lower scoring outliers is checked. If this overlap is larger than a user-defined
threshold θo, only the interval with the higher score is reported. Finally, the
algorithm sorts the intervals in descending order of their score, so that a user-
specified number of top k intervals can be selected as output.

5 Experimental Results

To determine whether the MDI algorithm is suited to identify critical events in
energy climate data we performed several experiments. Each experiment repre-
sents a potential use case for our project and partners, while they are also a test
case for the tuning and pre-processing used. The outliers found where presented
to subject matter experts to determine if they provide insight in critical events
that could influence the future energy system.
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All experiments are performed on an Intel Xeon Gold 6130 CPU with 16
dual-cores at 2.1 GHz clock speed. Our setup has 125.6GB of available RAM
memory. The multi-threading was limited to using 30 threads.

The rest of this section is organised as follows. First we discuss the tuning
performed to make the MDI algorithm usable for renewable energy generation
time series data in section 5.1. The top 20 outliers detected using Cross Entropy
and the unbiased Kullback-Leibler divergence are then investigated in section 5.2.
Finally in section 5.3, we investigate if there are climate change induced changes
in the intensity, time of the year and length of the top 50 outliers per decade.

5.1 Tuning of the MDI algorithm

The settings of the algorithm were chosen in consultation with the domain ex-
perts, the model choices presented below are the end result.

Because the single Gaussian distribution gave quite a bad fit, we selected
KDE using Gaussian kernels (with kernel width 1) to estimate the probability
distributions. Hotelling’s T 2 proposal method is used with ϑ = 1.5. The allowed
overlap between intervals was set to θo = 0.5. The built-in data normalization
method of the MDI algorithm, subtraction of the mean and division by the
maximum, was used. We used both Cross Entropy and the unbiased Kullback-
Leibler divergence to score intervals.

The interval length was set to 2 days minimum, and 10 days maximum. The
reason was two-fold, the usefulness of the output as deemed by our experts and
tractability of the algorithm. At shorter timescales batteries and the shifting of
demand can be utilised to mitigate the effect of an outlier. At longer timescales
(sub-)seasonal storage, like hydrodams and hydrogen, can be utilised. However,
for the period between 2 and 10 days there are multiple technologies that could
be utilised, some of which are not yet fully developed. Knowledge of outliers
within this window can therefore help determine what technologies could be
utilised or should be further developed. Using a minimum interval length also
makes sure there is sufficient data to reliably estimate a distribution.

In order to accurately discover temporal outliers, the temporal context em-
bedding parameters need to be investigated. The idea behind the temporal con-
text embedding is to pick points that are correlated at different time-lags. To
investigate the autocorrelation length, the partial autocorrelation per variable
was calculated (see Fig. 1). Based on these calculations we have decided to use
κ = 4 and τ = 8 as respectively temporal embedding dimension and time lag set-
tings, as these capture most of the autocorrelation in all variables. They ensure
that the autocorrelation in solar photo-voltaic power and onshore wind power
at the larger lags of approximately 24 hours are accounted for. These settings
also ensure that at least one day and night cycle is embedded as context, which
has a big impact on the Solar Photovoltaic energy generation in particular.

The original MDI algorithm of Barz et al. [3] is implemented in an open
source library6 with both a Python implementation of the algorithm and a C++

6 https://github.com/cvjena/libmaxdiv
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Fig. 1. The autocorrelation of variables at different time lags, using the Yule-Walker
method with sample size adjustment.

implementation. As the Python algorithm is not well suited for large data sets,
we used the C++ implementation and additionally built a wrapper in Python that
accessed the C++ multi-threading functionality and added xarray compatibility.

5.2 Outlier identification and assessment

In order to determine if MDI can find potential shortfalls or surges that might
affect the European energy system, we investigated the outliers that were identi-
fied by two divergence measures. The top outliers detected using Cross Entropy
and the unbiased Kullback-Leibler divergence are shown in Figures 2 and 3,
respectively. The top 20 outliers were also presented to our domain experts to
harness their insight in the tuning and assessment process. Both the Cross En-
tropy and unbiased Kullback-Leibler methods took just over 29 hours wall clock
time to calculate.

According to the domain experts, the top 20 outliers found are all likely to
be high impact events. Additional investigation revealed that the top outlier
based on Cross Entropy coincides with a period that was identified by Dawkins
et al. [10] as an adverse weather system for the electricity system of the United
Kingdom and Europe. For the top outlier detected using the unbiased Kullback-
Leibler divergence, a historical high impact event was found in the Burns’ day
storm (25th jan 1991). This storm is considered one of the worst storms of the
last century for the United Kingdom, the Netherlands, and Belgium in which 97
people lost their lives.

To summarize them, the top 20 outliers were grouped based on the month
in which they occur, the length of the outlier and their type. The type of an
outlier is based on three indicators, namely Peak, Trough and Peak-Trough (see
Tab. 1). During a Peak, the power generation is above normal for two or more
of the three energy sources. In a Trough, power generation is below normal. The
Peak-Trough type indicates that the outlier contains a variable that has a peak
as well as one that has a trough, and the combined energy generation over the
period is neither very high nor very low.
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Based on the grouping we defined classes for the outliers. For the unbiased
Kullback-Leibler divergence these classes are Winter Surplus and Summer Defi-
ciency. We consider the outliers that show a peak in the extended winter from
November through March to be part of the Winter Surplus class. Outlier events
with a trough in overall electricity generation in the extended summer period,
from May through September, are part of the Summer Deficiency class. For Cross
Entropy we have similar classes: Winter Surplus, Long Term Summer Deficiency

Fig. 2. Figures depicting the outlier with the highest score using the Cross Entropy
measure. The top figures show the generation of each technology and the temporal
context in which the outlier (indicated by red lines) was found. The bottom images
provide histograms of the generation (in MWh) of each of the three technologies during
the interval (in their respective colour) and the remaining data (in purple).

Table 1. Grouping of the top 20 outliers found by the MDI algorithm in our time
series data using Cross Entropy and unbiased Kullback-Leibler method. The grouping
has been ordered in such a way that the different outlier classes can be discerned easily.
It should be noted that although the length of the intervals is near the bounds, they
are not at the bounds in general.

Cross Entropy unbiased Kullback-Leibler

Top-k Month Length(h) SPV WON WOF Type Top-k Month Length(h) SPV WON WOF Type

1/6/13/19 Aug. 48-72 + − − T 1/5/7/10 Jan. 216+ − + + P

3/5 June 48-72 + − − T 2/8/17 Dec. 216+ − + + P

07/09/2017 July 48-72 + − − T 3/4 Feb. 216+ − + + P

16 July 72-96 + − − T 11/18-20 Nov. 216+ − + + P

10/15 July 150-175 + − − T 9 Jan. 192 − 216 − + + P

14 Feb. 48-72 − + − PT 6/13/16 Feb. 216+ 0 + + P

4 Apr. 48-72 0 + + P 14 Aug. 216+ + − − T

2/11 Dec. 48-72 − + + P 15 July 216+ + − − T

12/18 Feb. 48-72 − + + P

20 Jan. 48-72 − + + P
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Fig. 3. As Fig. 2, but for unbiased Kullback-Leibler divergence.

and Short Term Summer Deficiency. The only distinction is that for the Summer
Deficiency we have sub classes based on the length of the event: outliers that last
between 48 and 72 hours are considered short term, and outlier events longer
than 72 hours are considered long term.

These classes can be problematic as they influence the whole network. A long
deficiency needs to be compensated with other methods of non-carbon generation
that need to be flexible and can be controlled, as the current battery capacities
aren’t sufficient. Shorter deficiencies during the summer are also problematic,
as they require extensive use of battery capacity. During the day the batteries
charge on the available solar photo-voltaic energy generation, but at night they
need to be discharged to compensate for the lack of wind. This strain on the bat-
teries causes them to wear. An increase in such short deficiencies represents an
economic risk, as the batteries would need to be replaced more frequently. The
Winter Surplus increases the energy generation of the grid, causing a surplus,
which can be problematic if this isn’t controlled. The surplus needs to be dis-
charged somehow. This discharge of unused energy represents an economic risk,
as the wind turbines and solar panels are wearing down, without the energy that
is generated being used.

Based on the top 20 outliers we note that the outliers detected by the Cross
Entropy measure tend to have a very short duration, whereas the outliers de-
tected by the unbiased Kullback-Leibler divergence tend to be longer. As a quick
reminder, Cross Entropy is related to the Kullback-Leibler divergence measure
and the latter was found by Barz et al. [3] to have a bias towards smaller in-
tervals. We can thus expect this tendency to shorter intervals for Cross Entropy
outliers. However, the tendency towards longer intervals is unexpected for the
unbiased Kullback-Leibler divergence measure as it was created specifically to
be unbiased towards interval length. It should be noted that while some outliers
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are found on the bounds set on the outlier duration, they are in general not on
these bounds.

Irrespective of the tendency to be near the boundary interval lengths, both
divergence measure studies where deemed to identify likely high impact events
by our domain experts. Therefore both measures should be considered when
studying high impact events in energy climate data.

5.3 Historic climate change and decadal variability

The change of intensity, time of the year, and length of outliers might change
the impact of an event and is therefore important to consider [33, 17]. For
these experiments we combined offshore wind, onshore wind and solar photo-
voltaic power generation into a single variable called Total Electricity Genera-
tion (TEG). This single aggregate provides a reasonable indication of shortages
and surges in the electricity system, while reducing the computational burden
of the algorithm. We identify the top 50 outliers per decade and use these in
our assessment of the intensity, time and length of the outliers over the historic
period.

We found that the outliers in the TEG time series represent mostly peaks.
Trough-type outliers were difficult to detect in the TEG dataset, especially when
using the Cross Entropy measure. Potentially risky situations as in Figure 2
remain undetected in this univariate analysis. This underlines the added insight
provided by the multivariate analysis, and highlights the importance of selecting
the correct divergence measure.

The intensity of the outliers is investigated by looking at the average energy
generation during the outlier. Figure 4 shows a boxplot of the average Total
Energy Generation during the outlier for the top 50 outliers found with Cross
Entropy divergence. While there is no linear trend visible, some periodical be-
haviour appears to influence the outlier events. This periodic behaviour appears
in all combinations of top number of outliers investigated and divergence mea-
sures used. Due to the presence of Trough-type outlying events this effect is hard

Fig. 4. Boxplot of the average hourly Total Energy Generation during the top 50 outlier
events per decade based on the Cross Entropy measure.
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see for the unbiased Kullback-Leibler divergence (figure not shown). Similar be-
haviour of multidecadel variability in German wind energy generation was found
by Wohland et al. [36].

These result emphasise that the multidecadel variability needs to be taken
into account by policy makers as it influences the strength of the outliers. As-
sessments of the energy system currently only use a limited set of weather years
and might therefore under- or overestimate the extremeness of critical conditions
for the energy system.

We studied the timing and duration of the outliers found per decade in the
TEG time series to determine whether they are affected by climate change.
We did, however, not find any obvious trends or shifts that could potentially
be attributed to climate change. Such trends or shifts are possibly masked by
the multidecadel variability in the outliers. The time of emergence of a climate
change signal lies thus in the future, like it currently does for most climate related
impacts [18].

6 Conclusion and Future Work

Using the Maximally Divergent Intervals (MDI) algorithm we found outlying
time periods in 70 years of historic weather-derived energy production data on
three types of renewable energy. According to subject area experts from a na-
tional Transmission System Operator (TSO), the identified outliers indeed rep-
resented periods during which the European electricity system could be at risk.
However, when the three renewable energy generation variables were combined
into a single variable, Total Energy Generation, potential outliers were missed
as mostly peak-type outliers were detected. The multivariate analysis is therefor
preferred in further work. We conclude that, with the proper parameter settings,
outlier detection with MDI can help the assessment of the future energy grid by
highlighting the most extreme situations.

When analysing the Total Energy Generation peer decade we found that
the intensity of outliers manifests multidecadel variability over the last 70 years.
However, we found no trend could be attributed to climate change. This variabil-
ity in the outliers also hinders the determination of climate change attributable
shift or duration change in the historic period.

We demonstrated the added value of outlier detection with the MDI algo-
rithm compared to existing methods that require an a priori specification of
the critical events to be detected. Experiments showed that both outliers of
a different nature as well as with varying lengths were detected. Additionally,
as the length of the outlier interval is not a fixed in advance, comparison be-
tween events of different lengths is possible. However, there is a dependency
between the lengths of the detected intervals, and the divergence measure used.
Cross Entropy tends to prefer intervals of shorter duration, while the unbiased
Kullback-Leibler divergence tends to prefer longer intervals. As both measures
provide useful insights according to our subject area experts, we will continue
to use both measures for outlier detection in energy climate data.
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In the next phase of the project, the method presented here will be used
for two applications related to the assessment of power system adequacy. First,
when the outliers identified are combined with a method to represent the generic
variability of the weather, a synthetic representative time series could be con-
structed. Power system simulations based on a synthetic time series can be used
to ensure both representativeness with respect to critical climate conditions as
well as computational tractability. Second, besides applying the MDI method
on a historical climate dataset as was demonstrated in this paper, it can be
applied to climate projections from a multitude of climate simulation models
to investigate how climate change and multidecadal climate variability influence
the character and frequency of critical conditions for the electricity grid.

For both applications, the method is preferably applied to a dataset that
also takes electricity demand into account. For this purpose, the temperature
dependant component of the electricity demand should be based on climate
variables used for the calculation of the electricity generation from renewable
sources. Incorporation of energy consumption data might decrease or exacerbate
the impact of critical weather events.
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