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1. Representing the Climate in Datasets 

Climate if often thought of as the 'average weather'. More rigorously, it is the statistical description of 
the weather in terms of the mean and variance of relevant quantities over a period of time for a certain 
region. The period is usually 30 years as defined by the World Meteorological Organization (WMO 
2017). When considering only a region, it really describes the average pattern of weather for that 
region.  

While 30 years is still recommended as a standard averaging period for the calculation of quantile 
boundaries in climatological standard normal, the stability of most extreme statistics derived from 
that period is likely to be low for some variables (K. van der Wiel et al. 2019; Wohland, Eddine Omrani, 
et al. 2019). One could consider three approaches to solve that problem: first, by fitting a statistical 
distribution, such as a gamma distribution, to the observed data within a standard 30-year period 
(WMO 2007). Second, to use a period of data substantially longer than 30 years (Wohland et al. 2017; 
Wohland, Omrani, Keenlyside, et al. 2019). Or third, by using multiple model runs to sample a set 
period of 30 years (K. van der Wiel et al. 2019). 

Each method of characterizing the climate while considering extremes has advantages and 
disadvantages. The use of a statistical distribution allows for very specific sampling for certain risks, 
but it relies on the input data and the sampled extremes therein. The use of a longer period is very 
effective in sampling multi-decadal modes in the climate, but this method obscures the effects of 
climate change on the occurrence of extremes and thereby might ignore changes in risks. The use of 
multiple model runs allows for representative sampling of risks, while allowing for climate change 
signals to be visible, but it requires extensive analysis of risks and biases in the model runs.  

 

Types of Climatological datasets 

When discussing climatological or meteorological information, there are different types of datasets 
that can be used (see Fig. 1). These can be classified into three categories: (1) observational data, (2) 
reanalysis datasets, and (3) climate projection-based datasets. Each of these dataset types has its 
strengths and weaknesses.   

Observational datasets are extremely good in characterizing historical climate variables at a specific 
location. The variables under consideration are usually measured with a very high temporal resolution 



 

 

(Cornes et al. 2018). Their local information is of interest when studying for instance the suitability of 
a specific wind turbine or solar panel at a specific location (Akpinar and Akpinar 2005b; Chenni et al. 
2007). However, these types of datasets have one inherent downside, they are a collection of local 
measurements. The climatological information is thus only known for an extremely limited number of 
locations that do not cover all regions. Additionally, due to strict requirements for the way 
meteorological variables are measured, they generally only sample near-surface variables at open 
grass fields well outside of built-up areas with very similar topography(World Meteorological 
Organization 2018).  

Reanalysis datasets represent gridded historical climate variables over a large region, based on 
assimilated observations of those variables and a climate model. The gridded nature of these datasets 
means that the variables are available for each grid box, but they also represent the whole grid box. 
The quality of a reanalysis dataset depends heavily on the quality of the assimilated observations, 
therefore most reanalysis cover the satellite era period as satellites provide consistent observations 
globally. Commonly used global datasets are ERA5 (Hersbach et al. 2020), MERRA-2 (Gelaro et al. 
2017) and JRA55 (Harada et al. 2016; Kobayashi et al. 2015). There are also centennial reanalysis that 
focus on multi-decadal modes in the climate system (ERA-20C (Poli et al. 2016), CERA-20C(Laloyaux et 
al. 2018), ERA-20CM(Hersbach et al. 2015), and the 20th century reanalysis project (Compo et al. 
2011)).  

Climate projection datasets represent simulated gridded climate variables obtained by running global 
circulation models (GCMs). These models numerically simulate the dynamics of the climate system to 
derive long-term climate and weather projections. Climate projection datasets generally have lower 
resolution than reanalysis so they can model multiple iterations for long periods to create an ensemble 
dataset. When higher spatiotemporal resolution is needed, Regional Climate Models (RCMs) can be 
used. Transient GCMs typically model the period 1850-2100 with varying concentrations of 
greenhouse gases; they represent a realistic state of the climate under these emission scenarios. 
Equilibrium GCMs simulate the response of the climate to a constant concentration of greenhouse 
gases; they represent the stable state of the climate for a given concentration of greenhouse gases. 

 

Fig.  1 General applicability of climate dataset type for different study horizons 
in Resource Adequacy Assessments. Depending on the type of study, different 
choices can be made.   



 

 

2. Climate Change and Climate dependent Energy modelling 

 

Usage of historically observed or reconstructed climate conditions 

The most frequent approach so far has been to use in-situ historical records of climate information to 
represent the future (i.e., direct site-based meteorological observations). This climatological approach 
has the advantage that it provides an accurate view of the observed events. However, observations 
are not available everywhere and for long periods, and this becomes a real issue when considering 
RES generation from multiple locations.  

The best solution to overcome this gap is to consider climate reanalysis that provide comprehensive 
datasets both in space and time, over long periods. State-of-the-art reanalysis like the ECMWF ERA5 
have a spatial (ca 30 km) and temporal (1 hourly) resolution that makes them good candidates for 
such applications (Craig et al. 2022). As model-based and gridded products they do, however, come 
with the potential for biases and deficiencies that hinder their ability to estimate the actual 
observations which would have been taken at specific point locations. While ERA-5 has sufficient 
resolution to properly evaluate solar, and wind resources properly, at 30km resolution convection is 
still implicitly parameterized and the mesoscale phenomena driving many regional wind resources is 
not resolved at all(Kalverla et al. 2019; Sharp and Mass 2002). Still, they provide information 
everywhere and at all time steps, thus overcoming station observation data gaps. Reanalysis are 
frequently updated and extended, with improvements in the different components: the climate model 
itself, its spatial and temporal resolution, and the type, number, and quality of the assimilated 
observations.  

However, actual observations and reanalysis represent only the past climate. Such historical 
information is valid only if the climate is stationary and provided that the observational sample is 
sufficiently large to estimate the relevant modes of climate variability appropriately. Under a changing 
climate, past data can no longer be regarded as representative of the climate in the future. In addition, 
observations and reanalysis have a limited length. For instance, ERA5 spans the period from 1950 to 
the present, but the quality of the reconstruction before the 1980s comes with higher uncertainty due 
to fewer observations assimilated into the model. Power systems studies need to consider extreme 
events that might not be sufficiently well sampled with 40 to 70 years of data.  
 
Usage of detrended historical climate conditions 

One solution to consider the climate evolution observed over the past decades is to evaluate the 
trends and extrapolate these to future years. Such an approach offers the advantage of getting data 
more representative of the recently observed changes (Harang, Heymann, and Stoop 2020). However, 
it assumes that the trends will remain the same in the future, which might not be true, depending on 
the extrapolation method and period considered (Liebmann et al. 2010; Rojas et al. 2013; Karin van 
der Wiel et al. 2019). The associated methods are also generally not dealing with multivariate trends 
calculation and do not easily allow to extrapolate the different variables in a physically sound way.  

Trend extrapolation methods then sound acceptable for medium-term projections (for the next 5 to 
10 years) but are certainly not optimal for longer-term extrapolation (Craig et al. 2022; Harang, 
Heymann, and Stoop 2020; Wohland, Omrani, Witthaut, et al. 2019), especially when considering 
multi-decadal variability (Wohland, Omrani, Keenlyside, et al. 2019). In addition, the changes in 
circulation patterns (Coumou, Lehmann, and Beckmann 2015) and climate change induced shifts in 
weather regimes over certain regions are not considered (Rojas et al. 2013). This severely limits the 
consideration of changes in risk due to the changing climate.  



 

 

 
Usage of Climate projections 

Climate projections, based on physical models, offer the option to have long-term information, where 
the physics between the different variables is explicitly modelled. In particular, high-resolution 
regional climate models offer a higher spatial resolution at the cost of. Multi-model exercises like the 
EURO-CORDEX experiment (Jacob et al. 2014), provide different models so that models' uncertainties 
can be estimated to some extent.  

These models are run over past decades, which allows to validate them against reanalysis or 
observations and possibly adjust for their biases. They also provide continuous projections into the 
future, generally until the end of the 21st century, for different greenhouse gas emissions scenarios. 
While climate model output is perhaps not critical for medium-term studies (5-10 years ahead), it 
becomes essential for longer-term projections where the effects of forced anthropogenic climate 
change become more significant. With the new targets of the EU towards decarbonization in 2050, 
this kind of studies are becoming more and more frequent and vital, and relevant climate datasets are 
necessary for these. 
 
Conversion models  

Energy systems models do not use climate variables directly, but rather their transformation into 
energy-relevant variables: power consumption and generation, mainly for wind, solar and 
hydropower, through energy conversion models.  

Two modelling methodologies can be considered when converting climate to energy variables. 
Statistical models  (Akpinar and Akpinar 2005a; Dubus et al. 2021a; de Felice 2020; de Felice, 
Alessandri, and Ruti 2013; Ho et al. 2020; Pierro et al. 2017) use historical climate and generation data 
to make assumptions and build the relationship between climate and energy variables. Fully statistical 
models effectively capture historical relationships but are very dependent on the input data used (de 
Felice 2020). The assumption that past statistical relationships will still be valid in the future makes 
these models not very flexible (Harang, Heymann, and Stoop 2020). Physical and empirical models 
make assumptions about the technological relationship between climate and energy variables based 
on physical and empirical laws (Dubus et al. 2021; Y.-M. Saint-Drenan et al. 2018; Y. M. Saint-Drenan 
et al. 2020). Different technological assumptions can thus be made by adapting the parameters in 
these models accordingly.  
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